Attenuation bias in the granular residual

I analyze the properties of the granular residual. The conclusion is that it suffers from attenuation bias, but the bias goes to 0 as the number of firm K becomes large. I did not take a very large number of firms in the analysis, because this introduced new difficulties – the homogeneity assumption (55) is likely to be a less good approximation.

I consider first a one-factor model (no industry shocks). For firm i:

$$g_{it} = a_t + \varepsilon_{it} \quad (55)$$

where a_t is a common shock, and ε_{it} is an idiosyncratic shock. The granular residual is:

$$\Gamma_K = \frac{\sum_{i=1}^{K} S_i (g_i - \overline{g})}{\sum_{i=1}^{K} S_t} \quad (56)$$

while the econometrician would like to know the “ideal” granular residual – a weighted mean of the idiosyncratic shocks of the top K firms.

$$\Gamma^*_K = \frac{\sum_{i=1}^{K} S_i \varepsilon_i}{\sum_{i=1}^{K} S_t} \quad (57)$$

(the specific choice of the denominator does not matter here, as I investigate the R^2’s, and R^2 do not change when one multiplies some variables by a constant).

GDP growth follows, as in the model of section 3:

$$y_t = \phi \Gamma^*_{Kt} + u_t \quad (58)$$

where u_t is a disturbance orthogonal to $(\varepsilon_{it})_{i=1..K}$. One would like to know how much R^2 of the idiosyncratic shocks of the top K firms explain, i.e. the R^2 of the ideal granular residual:

$$R^2_{\Gamma^*_K} = \frac{\text{cov} (y_t, \Gamma^*_{Kt})^2}{\text{var} (y_t) \text{var} (\Gamma^*_K)} \quad (59)$$
The empirical analysis only gives the R^2 of the granular residual Γ:

$$R^2_{\Gamma_K} = \frac{\text{cov}(y_t, \Gamma_{Kt})^2}{\text{var}(y_t) \text{var}(\Gamma_{Kt})}$$ (60)

Econometrically, the situation is tricky, because economically, a_t is correlated with Γ^*_K.

A quantity of interest is the Herfindahl of the top K firms:

$$H_K = \frac{\sum^K_{i=1} S_i^2}{\left(\sum^K_{i=1} S_i\right)^2}$$ (61)

By the Cauchy-Schwartz inequality, $KH_K \geq 1$.

Lemma 2 The R^2 of the granular residual is a downward biased estimate of the R^2 of the ideal granular residual, by a factor $1 - \frac{1}{KH_K}$.

$$R^2_{\Gamma_K} = R^2_{\Gamma^*_K} \left(1 - \frac{1}{KH_K}\right)$$

Proof. We first observe that, by rescaling, it is enough to analyze the case where $\sigma_\varepsilon = 1$. I call $\sum^K_{i=1} S_i = s$. Call $\overline{X} = K^{-1} \sum^K_{i=1} X_i$ for a variable X. Then: $\Gamma = \sum^K_{i=1} (S_i - s/K) \varepsilon_i$, which gives, dropping the K subscripts when there is no ambiguity:

$$\Gamma^*_t = \Gamma_t + \overline{\varepsilon}_t \text{ with } \text{cov}(\Gamma_t, \overline{\varepsilon}_t) = 0$$

which means that Γ is a noisy proxy for Γ^*. Also

$$\text{cov}(\Gamma^*_t, \Gamma_t) = \text{var}\Gamma_t = \left(\sum^K_{i=1} S_i\right)^2 \left(H - \frac{1}{K}\right)$$

$$\text{var}\Gamma^*_t = \left(\sum^K_{i=1} S_i\right)^2 H$$

and

$$R^2_{\Gamma} = \frac{\text{cov}(y, \Gamma_t)}{\text{var} \cdot \text{var} (\Gamma_t)} = \frac{\phi^2 \text{cov}(\Gamma_t, \Gamma^*_t)}{\text{var} \cdot \text{var} (\Gamma_t)} = \frac{\phi^2 (\text{var}\Gamma^*)^2 (1 - \frac{1}{HK})^2}{\text{var} \cdot \text{var} \Gamma^*} = \frac{\text{cov}(y, \Gamma^*_t)^2}{\text{var} \cdot \text{var} \Gamma^*} \left(1 - \frac{1}{HK}\right)^2 \frac{\text{var}\Gamma^*}{\text{var}\Gamma}$$

$$= R^2_{\Gamma^*_t} \left(1 - \frac{1}{HK}\right) \frac{H}{H - \frac{1}{K}} = R^2_{\Gamma^*_t} \left(1 - \frac{1}{HK}\right).$$

Empirically, for the $K = 100$, firms, $\left(1 - \frac{1}{KH_K}\right) = 2/3$. Hence if empirically the $R^2_{\Gamma_K} = 1/3,$
the R^2 of the ideal granular residual is $R^2_{\Gamma,K} = 1/2$. This bias is an attenuation bias, as the granular residual is a noisy proxy for the ideal granular residual.

If the distribution is very concentrated, then $H_K \gg 1/K$. Formally, the proof of Proposition 2 shows that if the Pareto exponent of the distribution is $1 \leq \zeta < 2$, $KH_K \sim K^{2-2/\zeta}$, so $\lim_{K \to \infty} (KH_K)^{-1} = 0$, and as $K \to \infty$, $R^2_{Y,\Gamma_K}/R^2_{Y,\Gamma_{K^*}} \to 1$. This is the sense in which, for large K, the granular residual identifies the explanatory power of the ideal granular residual.

The same reasoning applies, with messier expressions, with industry-specific shocks, model: $g_{it} = a_t + a_I + \epsilon_{it}$. The R^2 of the Γ^{ind} is a downward estimate R^2 of the ideal granular residual $\Gamma^{*,ind}$. The bias goes to 0 as the number of firms becomes large.