Frequencies for first 10,000 rows of resbed variable in psfipf dataset : Intern/Resi | dent to Bed | Ratio | Freq. Percent Cum. ------------+----------------------------------- 0 | 8,760 87.60 87.60 .0001 | 24 0.24 87.84 .0006 | 1 0.01 87.85 .0008 | 6 0.06 87.91 .0009 | 29 0.29 88.20 .001 | 2 0.02 88.22 .0011 | 6 0.06 88.28 .0012 | 6 0.06 88.34 .0014 | 2 0.02 88.36 .0016 | 3 0.03 88.39 .0017 | 11 0.11 88.50 .0019 | 3 0.03 88.53 .0023 | 4 0.04 88.57 .0024 | 13 0.13 88.70 .0025 | 14 0.14 88.84 .0032 | 2 0.02 88.86 .0034 | 2 0.02 88.88 .0036 | 4 0.04 88.92 .0038 | 6 0.06 88.98 .0042 | 2 0.02 89.00 .0061 | 3 0.03 89.03 .0062 | 2 0.02 89.05 .0067 | 5 0.05 89.10 .0071 | 23 0.23 89.33 .0073 | 2 0.02 89.35 .0074 | 5 0.05 89.40 .0075 | 3 0.03 89.43 .0076 | 2 0.02 89.45 .0079 | 1 0.01 89.46 .008 | 7 0.07 89.53 .0081 | 2 0.02 89.55 .0085 | 2 0.02 89.57 .0087 | 4 0.04 89.61 .0092 | 2 0.02 89.63 .0093 | 2 0.02 89.65 .0108 | 3 0.03 89.68 .0115 | 17 0.17 89.85 .0124 | 3 0.03 89.88 .0126 | 7 0.07 89.95 .0141 | 2 0.02 89.97 .0144 | 6 0.06 90.03 .0146 | 5 0.05 90.08 .0147 | 3 0.03 90.11 .015 | 7 0.07 90.18 .0151 | 2 0.02 90.20 .0152 | 3 0.03 90.23 .0154 | 3 0.03 90.26 .0155 | 1 0.01 90.27 .0156 | 4 0.04 90.31 .0159 | 7 0.07 90.38 .0163 | 4 0.04 90.42 .0164 | 5 0.05 90.47 .0168 | 2 0.02 90.49 .0175 | 3 0.03 90.52 .0176 | 5 0.05 90.57 .0177 | 2 0.02 90.59 .0179 | 5 0.05 90.64 .0186 | 6 0.06 90.70 .0188 | 6 0.06 90.76 .0189 | 4 0.04 90.80 .0192 | 2 0.02 90.82 .0194 | 1 0.01 90.83 .0199 | 2 0.02 90.85 .0202 | 1 0.01 90.86 .0205 | 7 0.07 90.93 .0209 | 4 0.04 90.97 .021 | 8 0.08 91.05 .0214 | 2 0.02 91.07 .0215 | 7 0.07 91.14 .0219 | 2 0.02 91.16 .022 | 3 0.03 91.19 .0222 | 3 0.03 91.22 .0223 | 1 0.01 91.23 .0225 | 1 0.01 91.24 .0226 | 3 0.03 91.27 .0231 | 2 0.02 91.29 .0232 | 2 0.02 91.31 .0235 | 3 0.03 91.34 .0241 | 1 0.01 91.35 .025 | 6 0.06 91.41 .0252 | 2 0.02 91.43 .0263 | 1 0.01 91.44 .0269 | 1 0.01 91.45 .0277 | 4 0.04 91.49 .0283 | 3 0.03 91.52 .0284 | 2 0.02 91.54 .0286 | 1 0.01 91.55 .0289 | 5 0.05 91.60 .0292 | 3 0.03 91.63 .0318 | 5 0.05 91.68 .0333 | 1 0.01 91.69 .035 | 4 0.04 91.73 .0354 | 4 0.04 91.77 .0361 | 7 0.07 91.84 .0365 | 4 0.04 91.88 .0376 | 2 0.02 91.90 .0391 | 2 0.02 91.92 .0396 | 17 0.17 92.09 .0412 | 3 0.03 92.12 .042 | 2 0.02 92.14 .0423 | 2 0.02 92.16 .0424 | 20 0.20 92.36 .0428 | 2 0.02 92.38 .0429 | 2 0.02 92.40 .043 | 3 0.03 92.43 .0439 | 2 0.02 92.45 .044 | 2 0.02 92.47 .0446 | 3 0.03 92.50 .0458 | 1 0.01 92.51 .0496 | 5 0.05 92.56 .0498 | 2 0.02 92.58 .0515 | 13 0.13 92.71 .0534 | 2 0.02 92.73 .0553 | 4 0.04 92.77 .0584 | 2 0.02 92.79 .0616 | 3 0.03 92.82 .0658 | 3 0.03 92.85 .066 | 1 0.01 92.86 .0663 | 2 0.02 92.88 .0665 | 2 0.02 92.90 .0667 | 3 0.03 92.93 .0672 | 3 0.03 92.96 .068 | 1 0.01 92.97 .0685 | 4 0.04 93.01 .0688 | 1 0.01 93.02 .0698 | 2 0.02 93.04 .0705 | 3 0.03 93.07 .071 | 2 0.02 93.09 .0712 | 2 0.02 93.11 .0714 | 12 0.12 93.23 .0722 | 9 0.09 93.32 .0724 | 6 0.06 93.38 .0729 | 2 0.02 93.40 .0739 | 4 0.04 93.44 .0755 | 1 0.01 93.45 .0763 | 3 0.03 93.48 .0768 | 6 0.06 93.54 .0772 | 2 0.02 93.56 .0777 | 2 0.02 93.58 .0779 | 1 0.01 93.59 .0781 | 3 0.03 93.62 .0788 | 4 0.04 93.66 .0791 | 1 0.01 93.67 .0793 | 2 0.02 93.69 .0802 | 14 0.14 93.83 .0804 | 2 0.02 93.85 .0805 | 2 0.02 93.87 .0859 | 6 0.06 93.93 .0864 | 2 0.02 93.95 .0869 | 3 0.03 93.98 .0872 | 2 0.02 94.00 .0874 | 2 0.02 94.02 .0877 | 1 0.01 94.03 .0883 | 4 0.04 94.07 .0888 | 3 0.03 94.10 .0901 | 1 0.01 94.11 .0915 | 3 0.03 94.14 .0926 | 2 0.02 94.16 .0942 | 1 0.01 94.17 .0949 | 2 0.02 94.19 .1001 | 2 0.02 94.21 .1004 | 1 0.01 94.22 .1012 | 1 0.01 94.23 .1034 | 2 0.02 94.25 .104 | 3 0.03 94.28 .1069 | 8 0.08 94.36 .1076 | 3 0.03 94.39 .1104 | 2 0.02 94.41 .1106 | 2 0.02 94.43 .1132 | 2 0.02 94.45 .1159 | 1 0.01 94.46 .1268 | 9 0.09 94.55 .1296 | 2 0.02 94.57 .1349 | 2 0.02 94.59 .1387 | 1 0.01 94.60 .1404 | 2 0.02 94.62 .1405 | 1 0.01 94.63 .1448 | 2 0.02 94.65 .1459 | 6 0.06 94.71 .1471 | 1 0.01 94.72 .1521 | 2 0.02 94.74 .153 | 1 0.01 94.75 .1568 | 2 0.02 94.77 .1595 | 1 0.01 94.78 .1621 | 2 0.02 94.80 .1696 | 2 0.02 94.82 .1703 | 3 0.03 94.85 .1788 | 2 0.02 94.87 .1825 | 2 0.02 94.89 .1829 | 1 0.01 94.90 .1849 | 2 0.02 94.92 .1854 | 2 0.02 94.94 .1876 | 7 0.07 95.01 .1879 | 2 0.02 95.03 .1895 | 2 0.02 95.05 .1905 | 2 0.02 95.07 .1948 | 3 0.03 95.10 .2022 | 4 0.04 95.14 .2041 | 2 0.02 95.16 .2052 | 2 0.02 95.18 .2086 | 2 0.02 95.20 .21 | 2 0.02 95.22 .2105 | 7 0.07 95.29 .2115 | 5 0.05 95.34 .2126 | 5 0.05 95.39 .2131 | 1 0.01 95.40 .2136 | 2 0.02 95.42 .2139 | 3 0.03 95.45 .2145 | 2 0.02 95.47 .2163 | 2 0.02 95.49 .2188 | 2 0.02 95.51 .2214 | 1 0.01 95.52 .2229 | 2 0.02 95.54 .2241 | 2 0.02 95.56 .2242 | 2 0.02 95.58 .2258 | 2 0.02 95.60 .2274 | 5 0.05 95.65 .2286 | 6 0.06 95.71 .231 | 2 0.02 95.73 .232 | 3 0.03 95.76 .2324 | 1 0.01 95.77 .2333 | 3 0.03 95.80 .2335 | 2 0.02 95.82 .235 | 4 0.04 95.86 .2365 | 4 0.04 95.90 .2386 | 2 0.02 95.92 .2402 | 2 0.02 95.94 .241 | 4 0.04 95.98 .2414 | 2 0.02 96.00 .2445 | 1 0.01 96.01 .2462 | 2 0.02 96.03 .2489 | 2 0.02 96.05 .2502 | 3 0.03 96.08 .2544 | 3 0.03 96.11 .2585 | 2 0.02 96.13 .2601 | 3 0.03 96.16 .2605 | 1 0.01 96.17 .2624 | 2 0.02 96.19 .2647 | 10 0.10 96.29 .2652 | 3 0.03 96.32 .2656 | 2 0.02 96.34 .2669 | 8 0.08 96.42 .2675 | 3 0.03 96.45 .2703 | 2 0.02 96.47 .2718 | 3 0.03 96.50 .2722 | 2 0.02 96.52 .2724 | 2 0.02 96.54 .2746 | 2 0.02 96.56 .2752 | 2 0.02 96.58 .2763 | 3 0.03 96.61 .2765 | 2 0.02 96.63 .2772 | 2 0.02 96.65 .2773 | 2 0.02 96.67 .2818 | 2 0.02 96.69 .2833 | 1 0.01 96.70 .2841 | 2 0.02 96.72 .2924 | 1 0.01 96.73 .2945 | 2 0.02 96.75 .2949 | 1 0.01 96.76 .2954 | 1 0.01 96.77 .299 | 4 0.04 96.81 .2993 | 3 0.03 96.84 .2994 | 2 0.02 96.86 .3004 | 2 0.02 96.88 .3007 | 2 0.02 96.90 .3052 | 3 0.03 96.93 .3062 | 3 0.03 96.96 .3159 | 2 0.02 96.98 .3176 | 2 0.02 97.00 .3189 | 2 0.02 97.02 .3217 | 4 0.04 97.06 .3312 | 4 0.04 97.10 .3321 | 4 0.04 97.14 .3328 | 2 0.02 97.16 .3361 | 2 0.02 97.18 .3363 | 6 0.06 97.24 .3382 | 2 0.02 97.26 .3428 | 2 0.02 97.28 .3483 | 1 0.01 97.29 .3507 | 3 0.03 97.32 .358 | 2 0.02 97.34 .3603 | 1 0.01 97.35 .3607 | 6 0.06 97.41 .3644 | 2 0.02 97.43 .3666 | 1 0.01 97.44 .3724 | 2 0.02 97.46 .3785 | 3 0.03 97.49 .3802 | 2 0.02 97.51 .3871 | 2 0.02 97.53 .3973 | 2 0.02 97.55 .4121 | 3 0.03 97.58 .42 | 2 0.02 97.60 .4222 | 2 0.02 97.62 .4388 | 1 0.01 97.63 .4736 | 1 0.01 97.64 .4761 | 2 0.02 97.66 .4829 | 1 0.01 97.67 .4848 | 2 0.02 97.69 .4858 | 9 0.09 97.78 .4969 | 2 0.02 97.80 .5077 | 3 0.03 97.83 .5084 | 14 0.14 97.97 .5225 | 2 0.02 97.99 .5247 | 2 0.02 98.01 .53 | 2 0.02 98.03 .5358 | 3 0.03 98.06 .5382 | 3 0.03 98.09 .541 | 1 0.01 98.10 .5548 | 2 0.02 98.12 .5555 | 2 0.02 98.14 .5566 | 2 0.02 98.16 .5586 | 1 0.01 98.17 .5641 | 11 0.11 98.28 .5686 | 5 0.05 98.33 .5745 | 6 0.06 98.39 .5751 | 3 0.03 98.42 .5798 | 5 0.05 98.47 .5835 | 2 0.02 98.49 .5846 | 3 0.03 98.52 .5852 | 2 0.02 98.54 .5854 | 1 0.01 98.55 .5916 | 2 0.02 98.57 .5992 | 6 0.06 98.63 .6134 | 2 0.02 98.65 .6194 | 3 0.03 98.68 .6333 | 3 0.03 98.71 .6775 | 5 0.05 98.76 .6789 | 3 0.03 98.79 .6796 | 3 0.03 98.82 .7005 | 2 0.02 98.84 .7012 | 2 0.02 98.86 .7066 | 2 0.02 98.88 .7088 | 1 0.01 98.89 .7307 | 2 0.02 98.91 .7309 | 1 0.01 98.92 .7669 | 2 0.02 98.94 .7974 | 2 0.02 98.96 .7991 | 1 0.01 98.97 .813 | 2 0.02 98.99 .8295 | 4 0.04 99.03 .8463 | 5 0.05 99.08 .8508 | 2 0.02 99.10 .8725 | 1 0.01 99.11 .8734 | 3 0.03 99.14 .881 | 2 0.02 99.16 .8858 | 2 0.02 99.18 .8895 | 1 0.01 99.19 .9007 | 2 0.02 99.21 .911 | 4 0.04 99.25 .9291 | 3 0.03 99.28 .9349 | 2 0.02 99.30 .9518 | 3 0.03 99.33 .9628 | 2 0.02 99.35 .9639 | 6 0.06 99.41 1.0128 | 2 0.02 99.43 1.0199 | 4 0.04 99.47 1.0231 | 2 0.02 99.49 1.0256 | 1 0.01 99.50 1.0282 | 2 0.02 99.52 1.1737 | 1 0.01 99.53 1.1905 | 2 0.02 99.55 1.2837 | 1 0.01 99.56 1.3115 | 3 0.03 99.59 1.323 | 3 0.03 99.62 1.3876 | 1 0.01 99.63 1.5595 | 2 0.02 99.65 1.6843 | 3 0.03 99.68 1.6898 | 2 0.02 99.70 1.762 | 2 0.02 99.72 1.7716 | 4 0.04 99.76 1.7905 | 1 0.01 99.77 1.8302 | 3 0.03 99.80 1.8757 | 4 0.04 99.84 1.8767 | 2 0.02 99.86 1.9034 | 2 0.02 99.88 1.9238 | 3 0.03 99.91 1.9536 | 7 0.07 99.98 1.9999 | 2 0.02 100.00 ------------+----------------------------------- Total | 10,000 100.00 by Jean Roth , jroth@nber.org , 24 Sep 2018